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Abstract

Understanding the vulnerability of linguistic
features extracted from noisy text is important
for both developing better health text classi-
fication models and for interpreting vulnera-
bilities of natural language models. In this
paper, we investigate how generic language
characteristics, such as syntax or the lexicon,
are impacted by artificial text alterations. The
vulnerability of features is analysed from two
perspectives: (1) the level of feature value
change, and (2) the level of change of fea-
ture predictive power as a result of text mod-
ifications. We show that lexical features are
more sensitive to text modifications than syn-
tactic ones. However, we also demonstrate
that these smaller changes of syntactic features
have a stronger influence on classification per-
formance downstream, compared to the im-
pact of changes to lexical features. Results
are validated across three datasets representing
different text-classification tasks, with differ-
ent levels of lexical and syntactic complexity
of both conversational and written language.

1 Introduction

It is important to understand the vulnerability of
linguistic features to text alteration because (1)
pre-defined linguistic features are still frequently
used in health text classification, e.g., detecting
Alzheimers disease (AD) (Masrani et al., 2017;
Zhu et al., 2018; Balagopalan et al., 2018), apha-
sia (Fraser et al., 2015), or sentiment from lan-
guage (Maas et al., 2011); and (2) understand-
ing the importance of syntactic and lexical infor-
mation separately as well as interactively is still
an open research area in linguistics (Lester et al.,
2017; Blaszczak, 2019).

Lexical richness and complexity relate to nu-
ances and the intricacy of meaning in language.
Numerous metrics to quantify lexical diversity,
such as type-token ratio (TTR) (Richards, 1987)

and MLTD (McCarthy, 2005), have been pro-
posed. These metrics capture various dimensions
of meaning, quantity and quality of words, such
as variability, volume, and rarity. Several of these
have been identified to be important for a variety
of tasks in applied linguistics (Daller et al., 2003).
For example, metrics related to vocabulary size,
such as TTR and word-frequencies, have proven
to help with early detection of mild cognitive im-
pairment (MCI) (Aramaki et al., 2016), hence are
important for early dementia diagnosis. Discourse
informativeness, measured via propositional idea
density, is also shown to be significantly affected
in speakers with aphasia (Bryant et al., 2013).
Furthermore, lexicon-based methods have proved
to be successful in sentiment analysis (Taboada
et al., 2011; Tang et al., 2014).

Syntactic complexity is evident in language pro-
duction in terms of syntactic variation and sophis-
tication or, in other words, the range and degree of
sophistication of the syntactic structures that are
produced (Lu, 2011; Ortega, 2003). This construct
has attracted attention in a variety of language-
related research areas. For example, researchers
have examined the developmental trends of child
syntactic acquisition (e.g., (Ramer, 1977)), the
role of syntactic complexity in treating syntac-
tic deficits in agrammatical aphasia (e.g., (Mel-
nick and Conture, 2000; Thompson et al., 2003)),
the relationship between syntactic complexity in
early life to symptoms of Alzheimers disease in
old age (e.g., (Kemper et al., 2001; Snowdon et al.,
1996)), and the effectiveness of syntactic com-
plexity as a predictor of adolescent writing quality
(e.g., (Beers and Nagy, 2009)).

Indefrey et al. (2001) reported data on brain ac-
tivation during syntactic processing and demon-
strated that syntactic processing in the human
brain happens independently of the processing of
lexical meaning. These results were supported
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by the more recent studies showing that differ-
ent brain regions support distinct mechanisms in
the mapping from a linguistic form onto mean-
ing, thereby separating syntactic agrammaticality
from linguistic complexity(Ullman et al., 2005;
Friederici et al., 2006). This motivates us to ex-
plore the importance of lexical and syntactic fea-
tures separately.

To our knowledge, there is no previous research
in medical text classification area exploring the
individual value of lexical and syntactic features
with regards to their vulnerability and importance
for ML models. Syntactic and lexical feature
groups are often used together without specifying
their individual value. For example, recent work
in text classification for AD detection revealed
that a combination of lexical and syntactic features
works well (Fraser et al., 2016; Noorian et al.,
2017); the same is true for other cognitive dis-
ease or language impairment detection (Meteyard
and Patterson, 2009; Fraser et al., 2014), as well
as sentiment detection in healthy speech and lan-
guage (Negi and Buitelaar, 2014; Marchand et al.,
2013; Pang et al., 2002).

In this paper, we focus on individual value of
lexical and syntactic feature groups, as studied
across medical text classification tasks, types of
language, datasets and domains. As such, the main
contributions of this paper are:

• Inspired by the results of neuroscience stud-
ies (Indefrey et al., 2001), we explore selec-
tive performance of lexical and syntactic fea-
ture groups separately.

• We demonstrate, using multiple analysis
methods, that there is a clear difference in
how lexical features endure text alterations in
comparison to the syntactic ones as well as
how the latter impact classification.

• We report results on three different datasets
and four different classifiers, which allows us
to draw more general conclusions.

• We conduct an example-based analysis that
explains the results obtained during the anal-
ysis.

2 Related Work

Prior research reports the utility of different
modalities of speech – lexical and syntac-
tic (Bucks et al., 2000; Fraser et al., 2016; Noorian

et al., 2017; Zhu et al., 2019) – in detecting demen-
tia. Bucks et al. (2000) obtained a cross-validated
accuracy of 87.5% among a sample of 24 partic-
ipants in detecting AD using eight linguistic fea-
tures, including part-of-speech (POS) tag frequen-
cies and measures of lexical diversity. A similar
feature set was employed by Meilán et al. (2014)
in a larger sample, where measures of lexical rich-
ness were less useful than features indicative of
word finding difficulty (such as pauses and repeti-
tions). Orimaye et al. (2014) obtained F-measure
scores up to 0.74 using a combination of lexical
and syntactic features on transcripts from a large
dataset of AD and controls speech, DementiaBank
(see Section 3.1)

Similarly, varying feature sets have been used
for detecting aphasia from speech. Researchers
have studied the importance of syntactic com-
plexity indicators such as Yngve-depth and length
of various syntactic representations for detecting
aphasia (Roark et al., 2011), as well as lexical
characteristics such as average frequency and the
imageability of words used (Bird et al., 2000). Pat-
terns in production of nouns and verbs are also
particularly important in aphasia detection (Wil-
son et al., 2010; Meteyard and Patterson, 2009).
Fraser et al. (2014) used a combination of syn-
tactic and lexical features with ASR-transcription
for the diagnosis of primary progressive aphasia
with a cross-validated accuracy of 100% within
a dataset of 30 English-speakers. More recently,
Le et al. (2017) proposed methods to detect para-
phasia, a type of language output error commonly
associated with aphasia, in aphasic speech using
phone-level features.

Sentiment analysis methodologies often use
lexicon-based features (Taboada et al., 2011; Tang
et al., 2014). Syntactic characteristics of text such
as proportions of verbs and adjectives, nature of
specific clauses in sentences are also salient in
sentiment detection (Chesley et al., 2006; Meena
and Prabhakar, 2007). Additionally, systems us-
ing both syntactic and lexical features have been
proposed in prior work (Negi and Buitelaar, 2014;
Marchand et al., 2013). For example, Marchand
et al. (2013) trained ML models on patterns in syn-
tactic parse-trees and occurrences of words from a
sentiment lexicon to detect underlying sentiments
from tweets while Negi and Buitelaar (2014) em-
ployed syntactic and lexical features for sentence
level aspect based sentiment analysis. Pang et al.



Datasets
DemB IMDBs AphB

Task nature
Structured X X
Partially structured X

Language type
Verbal X X
Written X

Lexics
Complex X
Medium X
Simple X

Syntax
Complex X
Medium X
Simple X

Table 1: Comparison of the datasets in terms of task
nature, type of language used to collect the data, lexical
and syntactic complexity.

(2002) showed that unigrams, bigrams and fre-
quencies of parts-of-speech tags such as verbs and
adjectives are important for an ML-based senti-
ment classifier.

3 Method

3.1 Datasets
In the following section, we provide context on
each of three similarly-sized datasets that we in-
vestigate that differ in the following ways (see also
Section 4):

1. Binary text classification task (AD detection,
sentiment classification, aphasia detection).

2. Type of language

3. Level of lexical and syntactic complexity.

3.1.1 DementiaBank (DemB)
DementiaBank1 is the largest publicly available
dataset for detecting cognitive impairments, and
is a part of the TalkBank corpus (MacWhinney,
2007). It consists of audio recordings of verbal de-
scriptions and associated transcripts of the Cookie
Theft picture description task from the Boston
Diagnostic Aphasia Examination (Becker et al.,
1994) from 210 participants aged between 45 to
90. Of these participants, 117 have a clinical diag-
nosis of AD (N = 180 speech recordings), while
93 (N = 229 speech recordings) are cognitively
healthy. Many participants repeat the task within
an interval of a year.

3.1.2 AphasiaBank (AphB)
AphasiaBank2 (MacWhinney, 2007) is another
dataset of pathological speech that consists of

1https://dementia.talkbank.org
2https://aphasia.talkbank.org

aphasic and healthy control speakers performing
a set of standard clinical speech-based tasks. The
dataset includes audio samples of speech and as-
sociated transcripts. All participants perform mul-
tiple tasks, such as describing pictures, story-
telling, free speech, and discourse with a fixed pro-
tocol. Aphasic speakers have various sub-types of
aphasia (fluent, non-fluent, etc.). In total, there
are 674 samples, from 192 healthy (N = 246
speech samples) and 301 (N = 428 speech sam-
ples) aphasic speakers.

3.1.3 IMDB Sentiment Extract (IMDBs)
The IMDB Sentiment (Maas et al., 2011) dataset
is a standard corpus for sentiment detection that
contains typewritten reviews of movies from the
IMDB database along with the review-associated
binary sentiment polarity labels (positive and neg-
ative). This dataset is used in order to extend
the range of ‘healthy’ language and test general-
izability of our findings. The core dataset consists
of 50,000 reviews split evenly into train and test
sets (with equal classes in both train and test). To
maintain a comparable dataset size to DemB and
AphB, we randomly choose 250 samples from the
train sets of each polarity, totalling 500 labeled
samples.

All the three datasets cover a breadth of tran-
scripts in terms of presence or absence of impair-
ment, as well as a spectrum of ‘healthy’ speech.

3.2 Feature Extraction

Following multiple previous works on text classifi-
cation, we extract two groups of linguistic features
– lexical and syntactic.

Lexical features: Features of lexical domain
have been recognized as an important construct in
a number of research areas, including stylistics,
text readability analysis, language assessment,
first and second language acquisition, and cogni-
tive disease detection. In order to measure vari-
ous dimensions of lexical richness in the datasets
under comparison, we compute statistics on to-
ken/unigram, bigram, and trigram counts. Addi-
tionally, we use the Lexical Complexity Analyser
(Ai and Lu, 2010) to measure various dimensions
of lexical richness, such as lexical density, sophis-
tication, and variation.

Following Oraby et al. (2018), Dušek et al.
(2019), and Jagfeld et al. (2018), we also use
Shannon entropy (Manning and Schtze, 2000,



p. 61ff.) as a measure of lexical diversity in the
texts:

H(text) = −
∑

x∈ text

freq(x)

len(text)
log2

(
freq(x)

len(text)

)
(1)

Here, x stands for all unique tokens/n-grams,
freq stands for the number of occurrences in the
text, and len for the total number of tokens/n-
grams in the text. We compute entropy over tokens
(unigrams), bigrams, and trigrams.

We further complement Shannon text entropy
with n-gram conditional entropy for next-word
prediction (Manning and Schtze, 2000, p. 63ff.),
given one previous word (bigram) or two previous
words (trigram):

Hcond(text)

= −
∑

(c,w)∈ text

freq(c, w)

len(text)
log2

(
freq(c, w)

freq(c)

)
(2)

Here, (c, w) stands for all unique n-grams in the
text, composed of c (context, all tokens but the last
one) andw (the last token). Conditional next-word
entropy gives an additional, novel measure of di-
versity and repetitiveness: the more diverse text
is, the less predictable is the next word given the
previous word(s) is; on the other hand, the more
repetitive the text, the more predictable is the next
word given the previous word(s).

Syntactic Features: We used the D-Level Anal-
yser (Lu, 2009) to evaluate syntactic variation and
complexity of human references using the revised
D-Level Scale (Lu, 2014).

We use the L2 Syntactic Complexity Analyzer
(Lu, 2010) to extract 14 features of syntactic com-
plexity that represent the length of production
units, sentence complexity, the amount of subordi-
nation and coordination, and the frequency of par-
ticular syntactic structures. The full list of lexical
and syntactic features is provided in Appendix A.

3.3 Classification Models
We benchmark four different machine learn-
ing models on each dataset with 10-fold cross-
validation. In cases of multiple samples per par-
ticipant, we stratify by subject so that samples of
the same participant do not occur in both the train
and test sets in each fold. This is repeated for each

Feature
subgroup Feature DemB IMDBs AphB

Lexical
richness

distinct tokens occuring once, % 0.58 0.64 0.32
distinct bigrams occuring once, % 0.89 0.95 0.83
distinct trigrams occuring once, % 0.96 0.99 0.92

Lexical
complexity

unigram entropy 5.42 6.53 6.70
bigram entropy 6.4 7.46 8.68
trigram entropy 6.55 7.54 9.19
bigram conditional entropy 1.01 0.95 1.99
trigram conditional entropy 0.16 0.09 0.51
lexicon complexity 1.33 1.47 1.32

Length of
production
unit

Mean length of clause 7.45 9.24 5.42
Mean length of sentence 8.77 21.42 6.01
Mean length of T-unit 11.85 18.99 6.15

Sentence
complexity

Clauses per sentence 1.21 2.35 1.08
D-level 0 0.63 0.26 0.74
D-level 1-4 0.23 0.21 0.14
D-level 5-7 0.14 0.52 0.11

Amount of
subordination

Clauses per T-unit 1.62 2.07 1.12
Complex T-units per T-unit 0.19 0.55 0.14
Dependent clauses per T-unit 0.68 1.00 0.19

Amount of
coordination

Coordinate phrases per clause 0.11 0.22 0.10
Coordinate phrases per T-unit 0.17 0.44 0.11
T-units per sentence 0.77 1.13 0.95

Particular
structures

Complex nominals per clause 0.64 1.09 0.33
Complex nominals per T-unit 1.03 2.28 0.38
Verb phrases per T-unit 1.93 2.64 1.19

Table 2: Lexical complexity and richness, and syntactic
complexity of the three datasets. Counts for n-grams
appearing only once are shown as proportions of the
total number of respective n-grams. Highest values on
each line are typeset in bold.

text alteration level. The minority class is over-
sampled in the training set using SMOTE (Chawla
et al., 2002) to deal with class imbalance.

We consider Gaussian naı̈ve Bayes (with equal
priors), random forest (with 100 estimators and
maximum depth 5), support vector Machine (with
RBF kernel, penalty C = 1), and a 2-hidden layer
neural network (with 10 units in each layer, ReLU
activation, 200 epochs and Adam optimizer) (Pe-
dregosa et al., 2011). Since the datasets have im-
balanced classes, we identify F1 score with macro
averaging as the primary performance metric.

3.4 Altering Text Samples

There can be three types of language perturba-
tions at the word level: insertions, deletions,
and substitutions on words. (Balagopalan et al.,
2019) showed that deletions are more affected
(significantly) than insertions and substitutions, so
we likewise focus on deletions. Following Bal-
agopalan et al. (2019), we artificially add deletion
errors to original individual text samples at prede-
fined levels of 20%, 40%, 60%, and 80%. To add
the errors, we simply delete random words from
original texts and transcripts at a specified rate.



3.5 Evaluating Change of Feature Values

In order to evaluate the change of feature values
for different levels of text alterations, z-scores are
used. We calculate z-scores of each individual fea-
ture in the transcripts with each level of alteration,
with relation to the value of that feature in the orig-
inal unaltered transcript.

Zx
feat = (featx − µno−alteration)/σno−alteration,

(3)

where featx refers to a given syntactic or lexi-
cal feature extracted from a transcript with an al-
teration level of x = 20..80, µ and σ are computed
over the entire original unaltered dataset.

Then, we average the individual z-scores across
all the features within each feature group (syntac-
tic and lexical) to get a z-score per feature group.

Zx
syntactic =

1

Nsyn

Nsyn∑
i=1

Zx
feati (4)

Zx
lexical =

1

Nlex

Nlex∑
i=1

Zx
feati , (5)

where Nsyn and Nlex refer to the total number
of syntactic and lexical features, respectively.

3.6 Evaluating change of feature predictive
power

We extract ∆F1x, or change in classification F1
macro score, with x% alteration with respect to no
alteration, for x = 20, 40, 60, 80, i.e,

∆F1x = F1x%alteration − F1no−alteration. (6)

To identify the relative importance of syntactic
or lexical features on classification performance,
we estimate coefficients of effect for syntactic and
lexical features. These coefficients are obtained by
regressing to F1 deltas using the syntactic and lex-
ical feature z-scores described in Section 3.5 for
each alteration level. Thus, the regression equa-
tion can be expressed as:

∆F1 = αZsyntactic + βZlexical. (7)

The training set for estimating α and β con-
sists of ∆F1x; (Zx

syntactic, Z
x
lexical) for x =

20, 40, 60, 80.

4 Comparing datasets

Three datasets used in our exploration represent
different dimensions of lexical and syntactic com-
plexity, and are unique in the nature of the tasks
they involve and their type of language, as shown
in Tab.1. AphB is the only dataset that includes
speech samples of unstructured speech, while
IMDBs is unique as it contains samples of written
language, rather than transcripts of verbal speech.

In terms of lexical and syntactic complexity, it
is interesting to note that AphB contains samples
that are most lexically complex, while at the same
time it is the most simple from the syntactic point
of view. We associate this with the fact that AphB
data come from partially unstructured tasks, where
free speech increases the use of a more complex
and more diverse vocabulary. IMDB is the most
lexically rich dataset (see Table 2), with the high-
est ratio of uni-, bi-, and trigrams occuring only
once.

IMDB is the most complex according to various
measures of syntactic complexity: it has the high-
est scores with metrics associated with length of
production unit, amount of subordination, coordi-
nation, and particular structures, and it also has the
highest amount of complex sentences (sentences
of D-level 5-7, as shown in Table 2). This may be
explained by the fact it is the only dataset based
on typewritten language. AphB has the lowest
level of syntactic complexity, containing the high-
est amount of the simplest sentences (D-level 0),
and lowest scores in other subgroups of syntactic
features (see Table 2).

Next, we analyse if these variously distinct
datasets have any common trend with regards to
the vulnerability and robustness of lexical and syn-
tactic feature groups.

5 Results and discussion

5.1 Feature vulnerability

Following the method described in Section 3.5,
we analyse if any of the feature groups (lexi-
cal or syntactic) is influenced more by text alter-
ations. As shown in Figure 1, the values of lex-
ical features are, on average, influenced signifi-
cantly more than syntactic ones (Kruskal-Wallis
test, p <0.05). Such a difference is observed in
all three datasets individually (see Table 3).

The differences of z-scores between lexical and
syntactic feature groups are higher for the IMDBs



Figure 1: Left: Change of syntactic and lexical feature values at different alteration levels, averaged across three
datasets. Right: Impact of syntactic and lexical features on classification for DementiaBank, AphasiaBank and
IMDBsentiment datasets, averaged across fours classifiers.

Dataset Level (%) of
alterations

Lexical
features (z-score)

Syntactic
features (z-score)

DemB

20 0.35 0.30
40 0.75 0.62
60 1.21 0.94
80 1.85 1.31

AphB

20 0.10 0.15
40 0.26 0.26
60 0.51 0.37
80 0.93 0.51

IMDBs

20 0.29 0.13
40 0.61 0.25
60 1.00 0.35
80 1.61 0.31

Table 3: Change of feature values, per dataset and per
level of text alterations.

dataset, which suggests that the difference is most
visible either in healthy or in written language.

These results suggest that lexical features are
more vulnerable to simple text alterations, such
as introduced deletion errors, while syntax-related
features are more robust to these modifications.
However, stronger changes of raw feature values
do not necessarily mean that the resulting mod-
ified features become more or less important for
classifiers. This leads us to inspect the impact of
text alteration on feature predictive power.

5.2 Feature significance and the impact of
alterations on feature predictive power

A simple method to understand the potential pre-
dictability of a feature is by looking at how
different the feature value is between classes
and whether this difference is statistically sig-
nificant. This method was previously used in
studies assessing automatic speech recognition for
Alzheimer’s (Zhou et al., 2016) and aphasia detec-
tion (Fraser et al., 2013).

We rank the p-values obtained, in each condi-
tion, from a two tailed non-parametric Kruskal-
Wallis test performed on each feature between
the two classes (healthy vs unhealthy in the DB
and AphB datasets, and positive vs negative in
IMDBs) and assign rank to each feature. It is in-
teresting to note that lexical features occupy the
overwhelming majority of first places across all
datasets, showing that lexical features are signif-
icantly different between classes. We further anal-
yse, following (Brunato et al., 2018), how the
rank of each feature changes when different lev-
els of text alterations are introduced. The maxi-
mum rank increase is higher on average for lex-
ical features than for syntactic (see Figure 2 for
details of rank changes in DemB dataset) across
all datasets. The ratio of features that become in-
significant after text alteration is also higher for
lexical features rather than in syntactic on average
across all datasets. As Figure 2 shows, the features
with increased rank are those that were not ini-
tially significantly different between classes. The
combination of these results suggest that not so
important lexical features become more and more
important with addition of text alterations, which
may decrease the performance of classification.

The above method of calculating p-values is
analogous to feature selection performed as a pre-
processing step before classification. Although
this step may provide some initial insights into fea-
ture significance, it does not guarantee the most
significant features will be those having the most
predictive power in classification.

We use the method described in Section 3.6 to
evaluate the impact of text alteration on the fea-
tures predictive power. The results in Table 4



Figure 2: Change of lexical (left) and syntactic (right) feature rank when text alterations of different levels are
introduced. Negative numbers denote decrease in rank, and positive numbers are an increase of rank. Blue cell
colours denote the highest increase in rank, red (the highest decrease) and yellow (a smaller level of increase or
decrease). Features are ranked based on p-values with the lowest p-value at the top. White cells show that features
were not significantly different between classes in the original text samples, based on DemB dataset.

Dataset Classifiers
NN SVM RF NB

DemB 1.82 1.83 1.98 1.80
IMDBs 5.22 6.39 7.15 3.74
AphB 2.22 2.44 2.28 2.17

Table 4: Ratio of coefficients, calculated as
Importancesyntactic/Importancelexical. Ratio
higher than one indicates that syntactic features are
more important for a classifier than lexical ones.

show that syntactic features have more predictive
power than lexical features. The lowest ratio is
observed with DemB, and the AphB results are
very close, suggesting that syntactic features are
approximately twice as important than lexical fea-
tures in predicting pathological speech. In healthy
written language, the difference is even higher and
reaches 7.15 for the random forest classifier.

In summary, the predictive power of syntactic
features is much stronger than that of lexical fea-
tures across three datasets and four main classi-
fiers, which suggest the results can be generaliz-

able across several different tasks and domains.

5.3 Example-based Analysis
As shown in previous sections, values of lexical
features are on average more influenced by text
alterations but this change does not affect classi-
fication as much as smaller value changes in syn-
tactic features. Table 5 provides examples of two
features, one lexical and one syntactic, their value
changes when text samples are modified, and the
associated change of the classifier’s predictions.

The value of lexical feature
cond entropy 3gram, showing conditional
entropy calculated for trigrams, decreases by
more than 50% when the text sample is modified
by only 20%. This change is much higher than
the associated absolute change of the syntactic
feature C/S (that shows the number of clauses
per sentence) that increases by 11% only on
the same level of alteration. The prediction
made by a classifier in the case of the lexical
feature, however, is the same as the prediction
of original transcript. Only when the general
level of alteration reaches 60% and the value of



Alteration
level Text sample Feature Feature

value / ∆
Prediction Dataset

original

&uh the boy is reaching into the cookie jar. he’s falling off the stool. the little girl is reaching for a cookie. mother is drying the
dishes. the sink is running over. mother’s getting her feet wet. they all have shoes on. there’s a cup two cups and a saucer on
the sink. the window has draw withdrawn drapes. you look out on the driveway. there’s kitchen cabinets. oh what’s happening.
mother is looking out the window. the girl is touching her lips. the boy is standing on his right foot. his left foot is sort of up in the
air. mother’s right foot is flat on the floor and her left she’s on her left toe. &uh she’s holding the dish cloth in her right hand and
the plate she is drying in her left. I think I’ve run out of. yeah.

lexical
(cond entropy 3gram)

0.24 / - Correct (healthy) DemB

20%

&uh the boy reaching the cookie jar. he’s falling off the stool. the little girl is reaching for cookie. mother is the dishes. the sink
is over. mother’s getting her feet. all have shoes. there’s cup two cups a saucer on sink. window has draw withdrawn drapes. you
look out on driveway. there’s kitchen cabinets. oh what’s happening. mother out the window. the girl is lips. the boy standing on.
his left foot is sort of up in the air. mother’s right foot is flat on the floor and left she’s on her left toe. &uh she’s holding the cloth
in right hand the plate she drying in her left. think I’ve run out of.

lexical
(cond entropy 3gram)

0.11 / 0.48 Correct (healthy) DemB

40%

&uh reaching the jar. he’s falling the stool. the little is reaching a cookie. mother drying the dishes. the sink is running over.
mother’s her wet. all have shoes on. a two and a sink. the. you look driveway. there’s kitchen. oh what’s happening. mother out
the window. the is her. is his foot. his left foot is sort of up air. foot is flat floor and she’s her toe. &uh she’s holding the dish cloth
in right the she is drying in left. I think of.

lexical
(cond entropy 3gram)

0.07 / 0.28 Correct (healthy) DemB

60%
&uh is cookie. falling stool. for cookie. the dishes. the. mother’s feet wet. they have. a two cups a sink. the has withdrawn drapes.
the. there’s. oh. mother the window. the lips. the boy right. is sort of. right foot is flat on floor on her left. &uh cloth right hand
and the she is in her left. yeah.

lexical
(cond entropy 3gram)

0.03 / 0.14 Incorrect (AD) DemB

original

okay. well in the first place the the mother forgot to turn off the water and the water’s running out the sink. and she’s standing
there. it’s falling on the floor. the child is got a stool and reaching up into the cookie jar. and the stool is tipping over. and he’s
sorta put down the plates. and she’s reaching up to get it but I don’t see anything wrong with her though. yeah that’s it. I can’t see
anything.

syntactic (C/S) 1.1 / - Correct (healthy) DemB

20%
well the first the the mother forgot to turn off the water the water’s out the sink. and standing there. it’s falling floor. is got a stool
and into the cookie jar. and the stool is tipping. and he’s sorta down the plates. and she’s reaching to get it but I don’t see anything
wrong with her though. that’s it. I can’t see anything.

syntactic (C/S) 1.22 / 1.11 Incorrect (AD) DemB

40%
okay. well in the forgot the water the water’s out the sink. and she’s standing there. it’s on the. the is got a stool and reaching up
the. the is tipping. and he’s sorta the. and she’s reaching up to get but I her. yeah that’s. I can’t.

syntactic (C/S) 1.0 / 0.91 Incorrect (AD) DemB

60%
okay. in water’s out the sink. falling. the got stool the cookie jar. and the stool is over. and he’s down the plates. and she’s up but
don’t wrong. can’t see anything.

syntactic (C/S) 1.0 / 0.91 Incorrect (AD) DemB

Table 5: Examples of two features, cond entropy 3gram and C/S, their value change when text samples are mod-
ified on the level of 20%, 40% and 60%, and associated classifier’s predictions. Examples are provided using the
DemB transcript samples and feature values.

the lexical feature decreases by more than 85%,
the prediction becomes incorrect. In the case of
syntactic features, the prediction already changes
to incorrect with the general level of alteration of
20%, although the feature value is still quite close
to the original one.

Consider this sentence in the original transcript:

She’s holding the dish cloth in her right
hand and the plate she is drying in her left.

With 20% of errors it is converted to the following:
She’s holding the cloth in right hand the
plate she drying in her left.

It is clear that lexical features based on the fre-
quency of uni-, bi- and trigrams are affected by
this change, because quite a few words disappear
in the second variant. In terms of syntactic struc-
tures, however, the sentence is not damaged much,
as we still can see the same number of clauses, co-
ordinate units, or verb phrases. Such an example
helps explain the results in the previous sections.

6 Conclusions and Future Research

This paper shows that linguistic features of text,
associated with syntactic and lexical complexity,
are not equal in their vulnerability levels, nor in
their predictive power. We study selective perfor-
mance of these two feature aggregations on three
distinct datasets to verify the generalizability of
observations.

We demonstrate that values of lexical features
are easily affected by even slight changes in text,
by analysing z-scores at multiple alteration lev-
els. Syntactic features, however, are more robust
to such modifications. On the other hand, lower
changes of syntactic features result in stronger
effects on classification performance. Note that
these patterns are consistently observed across dif-
ferent datasets with different levels of lexical and
syntactic complexity, and for typewritten text and
transcribed speech.

Several methods to detect and correct syntac-
tic (Ma and McKeown, 2012) and lexical er-
rors (Klebesits and Grechenig, 1994) as a post-
processing step for output from machine transla-
tion or ASR systems have been proposed in prior
work. Since our analysis indicates that error-
affected syntactic features have a stronger effect
on classification performance, we suggest impos-
ing higher penalties on detecting and correcting
syntactic errors than lexical errors in medical texts.
A limitation in our study is that we focused on text
alterations of a specific type, and the results were
only tested on relatively small datasets. In future
work, we will extend the analysis to other simple
text alterations such as substitutions as well as ad-
versarial text attacks (Alzantot et al., 2018). In
addition, we will extend the current work to see
how state-of-the-art neural network models, such
as Bert, can handle text alterations as they capture
lexical, syntactic and semantic features of the in-



put text in different layers. Finally, note that the
datasets considered in this study are fairly small
(between 500 and 856 samples per domain). Ef-
forts to release larger and more diverse data sets
through multiple channels (such as challenges) in
such domains as Alzheimer’s or aphasia detec-
tion, and depression detection (Valstar et al., 2016;
MacWhinney, 2007; Mozilla, 2019) need to be re-
inforced.
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Besançon, and Olivier Mesnard. 2013. [lvic-limsi]:
Using syntactic features and multi-polarity words
for sentiment analysis in twitter. In Second Joint
Conference on Lexical and Computational Seman-
tics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), volume 2, pages 418–424.

Vaden Masrani, Gabriel Murray, Thalia Field, and
Giuseppe Carenini. 2017. Detecting dementia
through retrospective analysis of routine blog posts
by bloggers with dementia. In BioNLP 2017,
pages 232–237, Vancouver, Canada,. Association
for Computational Linguistics.

Philip M McCarthy. 2005. An assessment of the range
and usefulness of lexical diversity measures and the
potential of the measure of textual, lexical diversity
(MTLD). Ph.D. thesis, The University of Memphis.

Arun Meena and TV Prabhakar. 2007. Sentence level
sentiment analysis in the presence of conjuncts us-
ing linguistic analysis. In European Conference on
Information Retrieval, pages 573–580. Springer.
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Carro, Dolores E López, Lymarie Millian-Morell,
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A List of Linguistic Features

Lexical Feature Description
distinct tokens Number of distinct tokens
distinct tokens ratio Number of distinct tokens occuring once
bigrams Number of distinct bigrams
distinct bigrams Number of distinct bigrams occuring once
distinct bigrams ratio Ratio of distinct bigrams occuring once
trigrams Number of distinct trigrams
distinct trigrams Number of distinct trigrams occuring once
distinct trigrams ratio Ratio of distinct trigrams occuring once
entropy 1gram Unigram entropy
entropy 2gram Bigram entropy
entropy 3gram Trigram entropy
cond entropy 2gram Conditional bigram entropy
cond entropy 3gram Conditional trigram entropy
wordtypes Number of word types
swordtypes Number of sophisticated word types
lextypes Number of lexical types
slextypes Number of sophisticated lexical word types
wordtokens Number of word tokens
swordtokens Number of sophisticated word tokens
lextokens Number of lexical tokens
slextokens Number of sophisticated lexical tokens
ld Lexical density
ls1 Lexical sophistication I
ls2 Lexical sophistication II
vs1 Verb sophistication I
vs2 Verb sophistication II
cvs1 Corrected VS1
ndw Number of different words
ndwz NDW (first 50 words)
ndwerz NDW (expected random 50)
ndwesz NDW (expected sequence 50)
ttr Type / token ratio
msttr Mean segmental ttr (50)
cttr Corrected ttr
rttr Root ttr
logttr Bilogarithmic ttr
uber Uber coefficient



Syntactic Feature Description
S Number of sentences
VP Number of verb phrases
C Number of clauses
T Number of T-units3

DC Number of dependent clauses
CT Number of complex T-units
CP Number of coordinate phrases
CN Number of complex nominals
MLS Mean length of sentence
MLT Mean length of T-units
MLC Mean length of clause
C/S Clauses per sentence
VP/T Verb phrases per T-unit
C/T Clauses per T-unit
DC/C Dependent clauses per clause
DC/T Dependent clauses per T-unit
T/S T-units per sentence
CT/T Complex T-units per T-unit
CP/T Coordinate phrases per T-unit
CP/C Coordinate phrases per clause
CN/T Complex nominals per T-units
CN/C Complex nominals per clause

3Here, T-unit is defined as the shortest grammatically al-
lowable sentences into which writing can be split or mini-
mally terminable unit. Often, but not always, a T-unit is a
sentence.


