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Abstract

Understanding robustness and sensitivity of
BERT models predicting Alzheimer’s disease
from text is important for both developing bet-
ter classification models and for understanding
their capabilities and limitations. In this paper,
we analyze how a controlled amount of desired
and undesired text alterations impacts perfor-
mance of BERT. We show that BERT is robust
to natural linguistic variations in text. On the
other hand, we show that BERT is not sensi-
tive to removing clinically important informa-
tion from text.

1 Introduction

Alzheimer’s disease (AD) is a prevalent neu-
rodegerative condition that inhibits cognitive abili-
ties and impacts one’s language abilities. For exam-
ple, cognitively impaired people tend to use more
pronouns instead of nouns, and pause more often
between sentences in narrative speech (Roark et al.,
2011). This insight makes automatic detection pos-
sible. Machine learning (ML) classifiers can detect
cognitive impairments given descriptive linguistic
features or using pre-trained large language mod-
els (Balagopalan et al., 2018; Zhu et al., 2019).

BERT is a model that achieves promising per-
formance on a variety of tasks, including AD pre-
diction from speech and language (Searle et al.,
2020; Yuan et al., 2020). However, this promising
performance may be fallacious, i.e. deep neural
language models may learn pseudo patterns from
training data to attain high performance on test
sets (Goyal et al., 2019; Gururangan et al., 2018;
Glockner et al., 2018; Tsuchiya, 2018; Geva et al.,
2019). Therefore, in order to be confident in the
outcomes of BERT models classifying AD it is im-
portant to assess whether these models are robust
to some natural noise that may be introduced in lan-
guage. It is also important to know if BERT models
are sensitive to the aspects that are considered to

be important for recognizing cognitive impairment
from human language.

In this paper, we analyze robustness and sensi-
tivity of BERT models in their ability to classify
AD from text by analysing the effect of noise, in-
troduced from artificial text perturbations, on the
performance of the model. Some previous research
was conducted on the impact of ASR-related noise
on dementia detection (Balagopalan et al., 2020b),
as well as the effect of artificial text alterations on
AD classification (Novikova et al., 2019). However,
these previous studies only focus on conventional
classification models, such as Random Forest and
SVM. To the best of our knowledge, we are the
first to analyse how the noise introduced by texts
perturbations impact BERT models, in the domain
of AD classification.

2 Methodology

2.1 Data
We use the ADReSS Challenge dataset (Luz et al.,
2020), which consists of 156 speech samples and
associated transcripts from non-AD (N=78) and
AD (N=78) English-speaking participants. Speech
is elicited from participants through the Cookie
Theft picture from the Boston Diagnostic Apha-
sia exam (Goodglass et al., 2001). In contrast to
other datasets for AD detection such as Dementia-
Bank’s English Pitt Corpus (Becker et al., 1994),
the ADReSS challenge dataset is well balanced in
terms of age and gender (Table 1). Another benefit
of this dataset is its division into standard train and
test sets that makes it easy to directly compare to
the previous research in the area.

2.2 Model
Multiple recent studies showed that BERT is a
promising model achieving strong enough perfor-
mance in detecting Alzheimer’s disease from tran-
scribed speech (Searle et al., 2020; Yuan et al.,
2020; Balagopalan et al., 2020a, 2021). Motivated
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Table 1: Basic characteristics of the patients in each
group in the ADReSS challenge dataset.

Dataset Class
AD Non-AD

ADReSS Train
Male 24 24
Female 30 30

ADReSS Test
Male 11 11
Female 13 13

by these results, we use a fine-tuned BERT (Devlin
et al., 2019) model in this work. To leverage the
language information encoded by BERT (Devlin
et al., 2019), we add a linear layer mapping rep-
resentations from the final layer of a pre-trained
12-layer BERT base1 for the AD vs non-AD bi-
nary classification task. The transcript-level input
to the model consists of transcribed utterances with
corresponding start and separator special tokens
for each utterance, following Liu et al. (Liu and
Lapata, 2019). A pooled embedding summariz-
ing information across all tokens in the transcript
is used as the aggregate transcript representation,
and passed to the classification layer (Devlin et al.,
2019; Wolf et al., 2019). This model is then fine-
tuned on training data for AD detection. For hy-
perparameter tuning, we optimize the number of
epochs to 10 by varying it from 1 to 12 during
cross-validation. Adam optimizer (Kingma and
Ba, 2014) and warmup linear learning rate schedul-
ing (Paszke et al., 2019) are used, based on prior
work on fine-tuning BERT (Devlin et al., 2019;
Wolf et al., 2019).

2.3 Perturbation Approaches

We used a variety of word-based augmentation ap-
proaches with the help of the nlpaug2 library to
generate perturbed versions of the test set of the
ADReSS dataset for the experiments.

Back-translation: this augmentation technique
proposed by Sennrich et al. (2016) leverages two
translation models, one translating the source text
from English to German and the other translating
it back to English. Back-translated texts should
maintain the semantics and basic syntactic struc-
ture of original texts and as such, robust model’s
performance should not decrease because of this
augmentation.

Word substitution with synonyms: following Niu

1https://huggingface.co/bert-base-uncased
2https://github.com/makcedward/nlpaug , the Python li-

brary for generating synthetic textual and speech data.

and Bansal (2018), we substitute a controlled vary-
ing amount of words in the transcript (10-90%)
with their synonyms in order to maintain seman-
tic meaning of the utterances. Synonyms are ex-
tracted from the NLTK WordNet corpus3. Replac-
ing words with their synonyms should not affect the
ability of a robust model to accurately distinguish
between healthy and AD classes.

Embedding-based word substitution: follow-
ing Alzantot et al. (2018); Wang and Yang (2015),
we use pre-trained word2vec embeddings to per-
form a KNN with cosine similarity search to find
the similar word for replacement. We then sub-
stitute a varying subsets (from 10 to 90%) of the
original transcripts with these replacements. We hy-
pothesize that model performance can be affected
by such augmentation stronger than by synonym
replacement, although this effect should not be sig-
nificant for a robust AD prediction model.

Removal of filled pauses: we remove all the filled
pauses (transcribed as um and uh) from the original
texts. Previous literature highlights the importance
of pauses in Alzheimer’s disease detection from
speech (Calley et al., 2010; Mack et al., 2013; Sei-
fart et al., 2018). Several authors report increases
in AD detection performance by extracting acous-
tic features such as filled pause counts (Eyre et al.,
2020; Tóth et al., 2015, 2018; Pistono et al., 2016).
Removal of such information should make it more
difficult for a model to accurately detect AD-related
samples of text.

Removal of information units: multiple studies
of AD narratives in picture description tasks have
reported the importance of information units in
detecting cognitive impairment (Fraser et al., 2016;
Croisile et al., 1996). Following (Croisile et al.,
1996), we define four key categories of information
units - subjects, locations, objects, and actions -
and delete them from the original transcripts to
generate perturbed versions of the test set. Such a
removal should make it more difficult for a model
to distinguish between healthy and AD samples.

3 Results

The results of testing the fine-tuned BERT model
on the variety of perturbed versions of the ADReSS
test set show that the performance changes differ-
ently depending on different types of text alter-
ations (Table 2). Removing tokens of filled pauses
does not change the performance at all. Removing

3https://www.nltk.org/howto/wordnet.html



Type of
perturbation

Level of
perturbation Acc F1 Prec Rec Spec W1

Original
transcript

NA 0.83 0.83 0.86 0.79 0.88 NA

Deleting
filled pauses

All 0.83 0.83 0.86 0.79 0.88 2.40

Deleting
information
units

All 0.81 0.84 0.74 0.96 0.67 2.87
Action 0.77 0.80 0.71 0.92 0.63 2.87
Location 0.77 0.78 0.74 0.83 0.71 0.77
Object 0.75 0.79 0.69 0.92 0.58 2.45
Subject 0.79 0.79 0.79 0.79 0.79 2.13

Back
translation

Eng <->DE 0.75 0.75 0.75 0.75 0.75 6.02

Substituting
with the most
similar word
(via word2vec
embeddings)

10% 0.83 0.84 0.81 0.88 0.79 5.63
20% 0.81 0.82 0.78 0.88 0.75 6.23
30% 0.81 0.82 0.80 0.83 0.79 6.23
40% 0.81 0.82 0.78 0.88 0.75 6.32
50% 0.81 0.80 0.86 0.75 0.88 6.20
60% 0.83 0.84 0.81 0.88 0.79 6.10
70% 0.71 0.70 0.73 0.67 0.75 6.32
80% 0.75 0.75 0.75 0.75 0.75 6.35
90% 0.77 0.78 0.76 0.79 0.75 6.26

Substituting
synonyms
(via
WordNet)

10% 0.77 0.79 0.72 0.88 0.67 3.55
20% 0.75 0.75 0.75 0.75 0.75 3.97
30% 0.77 0.78 0.76 0.79 0.75 4.12
40% 0.75 0.77 0.71 0.83 0.67 4.01
50% 0.75 0.75 0.75 0.75 0.75 3.86
60% 0.71 0.70 0.73 0.67 0.75 4.33
70% 0.81 0.82 0.80 0.83 0.79 3.98
80% 0.81 0.82 0.78 0.88 0.75 4.08
90% 0.77 0.78 0.74 0.83 0.71 4.16

Table 2: Performance of the fine-tuned BERT model
and similarity between original and perturbed texts
(Wasserstein distance W1).

information units, however, decreases the accuracy
of the model by 4-8%, depending on the type of
the information unit. Back translation and substi-
tutions of words with their synonyms or otherwise
similar words also negatively affect performance
of the model, although have the opposite effect on
recall vs specificity.

4 Discussion

4.1 Change in Classification Performance

Undesired change: As we have mentioned in Sec-
tion 2.3, some types of text alterations, such as back
translation, synonym substitution and embedding-
based substitution, represent natural noise that can
occur in user-generated texts. Changes in classi-
fication performance are not desired in this case
because we want the model to be robust towards
multiple paraphrases and use of synonyms. Our
fine-tuned BERT model behaves in a robust way in
terms of F1 and accuracy scores when up to 40% of
words are substituted with similar words based on
word2vec embeddings (the F1 score decreases by
1% and accuracy - by 2%, both changes not signifi-
cant with McNemar’s test p >0.65) or synonyms (a
decrease in 4-8% in F1 and accuracy, both changes
not significant with McNemar’s test p >0.15).

Type of
perturbation

Correlation between W1 and
Acc F1 Prec Rec Spec

Deleting
informational
units

0.24 0.56 -0.07 0.52 -0.21

Substituting
with the most
similar word
(via word2vec
embeddings)

0.77 0.89 0.89 0.87 -0.91

Deep representation
(VGG-16)

-0.26 -0.37 0.10 -0.45 0.41

Table 3: Correlation between similarity and perfor-
mance metrics.

Interestingly, recall and specificity values seem
to show the opposite results here - specificity de-
creases by up to 21%, while recall stays on the
same level or even increases by 4-9%. Substituting
words with their similar alternatives or synonyms
may be understood as increasing the level of lex-
ical complexity, i.e. the model is introduced with
multiple, maybe less usual, ways to express the
same meaning. It is known that lexical complexity
is one of the prominent ways that allow detecting
cognitive impairment from language. Thus such an
implicit way to change the lexical complexity of
texts seems to help the BERT model in reducing the
amount of true positive errors while detecting AD.
However, more than 40% of such substitutions may
make the original texts less realistic, which, as we
see from the results, substantially reduces model
performance, including reducing recall level.

Desired change: Other types of text alterations,
such as removal of information units or tokens rep-
resenting filled pauses, are not considered to be
natural noise. As these characteristics of language
are clinically important in detecting cognitive im-
pairment, the models should be sensitive to such
changes in language. Our results show that the fine-
tuned BERT model ignores completely removal of
filled pauses. Performance of the model decreases
by 3-5% of F1 as a reaction to deleting different
types of information units but this change is not sig-
nificant (McNemar’s test p >0.18). This change in
performance is similar to the change caused by syn-
onym substitution and shows that the model is not
sensitive enough to removal of clinically relevant
information.

This leads us to inspect how each type of alter-
ations affects distributional shift from the original
text and whether there is a relation between the
shift and model’s performance.



Figure 1: Differences in error rate between genders, by class. Here, M means ’male’ and F means ’female’.

4.2 Correlation with Distributional Shift

Inspired by (Lee et al., 2018) where hidden ac-
tivations were used to detect out-of-distribution
samples for images and by Rychener et al. (2020)
applied this method to text, we used sentence em-
beddings produced by BERT to quantify the distri-
butional shift among the original test set and its per-
turbed versions. To understand the level of dissimi-
larity among the versions of test sets, we calculated
the 1-Wasserstein distance (“earth mover distance",
W1), since it measures the minimum cost to turn
one probability distribution into another (Table 2).

W1 values show that deletion of information
units and filled pauses has the lowest effect on
the original text, while word2vec-based substitu-
tion shifts the distribution further away from the
original. Correlation between performance metrics
and W1 is not consistent across different types of
text alterations (Table 3): it is strongly positive be-
tween F1 and accuracy scores in case of embedding-
based substitutions (0.77 and 0.89), positive but
less strong (0.24 and 0.56) in case of deleting clin-
ically relevant information, and negative in case
of synonym substitution (-0.26 and -0.37). These
inconsistencies imply that the lack of sensitivity in
BERT models is caused by intrinsic model reasons
rather than distributional shift of test data.

4.3 Differences Based on Gender

In order to understand if BERT performance is bi-
ased towards any gender, we analyse the rate of
error within each gender group and how the error
rate is changing with additional amount of text al-
terations. The results of this analysis do not reveal
any differences between males and females within
the class of AD data samples. However when it
comes to the non-AD class, BERT tends to misclas-
sify the text samples produced by female subjects

significantly more often than those produced by
males, across all types of text alterations. The ef-
fect is pronounced the most in the case of synonym
substitution (see Figure 1), where the error rate of
classifying female-produced samples is 14% higher
on average than that of male-produced samples4.
Given that both training and test sets of the dataset
are well balanced, such a difference implies the
pre-trained BERT model is gender-biased and this
bias is not eliminated during fine-tuning.

5 Limitations and Conclusions

In this work, we analysed how the controlled
amount of desired and undesired text alterations
impacts BERT classification performance in the
domain of AD detection. We showed that BERT
is robust enough to the natural linguistic noise, al-
though the model is biased towards text samples of
non-AD females. On the other hand, BERT is not
sensitive enough to removal of clinically relevant
information. This lack of sensitivity is not directly
influenced by distributional shift.

This work is a first step towards investigating
BERT models’ robustness and sensitivity in the do-
main of AD detection from text, and we only report
empirical results of one BERT model fine-tuned
and tested on one dataset. More work should be
done in this area to ensure the results are widely
generalizable within the domain. Textual data used
in our experiment represent transcribed conversa-
tional speech and as such, may be quite different
from other types of texts, e.g. written text. Fu-
ture work is necessary to see if the effect of text
alterations remain the same with other types of text.

4Also significantly different based on t-test, p <0.005.
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